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A vectorized particle tracer for unstructured grids is described. The basic approach is to use 
elementary properties of the linear basis functions to search for particles on the grid using the 
element last occupied as an initial guess. To permit vectorization, a simple binary sort of the 
particles is performed every timestep such that all particles that have as yet not found their 
host element remain at the top of the list. In this way, vector-loops can be easily formed. 
Timings taken from a numerical example indicate that speed-ups of the order of 1:14 can be 
obtained on vector-machines when using this algorithm. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

In many applications of computational physics, particles are used in conjunction 
with finite difference of finite element grids. This strategy is commonly adopted in 
applications where the physical fields are most conveniently sampled at Eulerian 
mesh points but certain aspects of transport are best represented by the motion of 
Lagrangian particles. In fluid dynamics, for example [ 1, 21, flow fields may be 
updated on an Eulerian finite difference grid using information from Lagrangian 
particles which carry mass and, in some cases, momentum and energy. A more 
widespread example is the use of particle-mesh techniques to model plasmas or 
particle beams [3,4]. Here the particles carry electric charge and mass and interact 
through the Lorentz force equation with the electric and magnetic fields sampled 
from the grid. These fields in turn are updated in an Eulerian fashion using sources 
accumulated from the particles. 

In most applications, the number of particles required to faithfully reproduce the 
physical processes at hand is considerable. In fact, some applications have used on 
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the order of lo6 particles. During each timestep of the simulation, the particles 
change position. But before they can contribute information to the grid or sample 
field information from it, their new host element or cell must be identified. Therefore 
they must be traced through the grid. Regular, uniform Cartesian grids pose no 
special problem. The new host cell (i,, j,) is easily computed as 

i, = Int 
1 

(Xp-Xmin) 

knax - Xmin) 

N, 

I 

+ 1, (Yp-Ymin) N + 1. 

jc=Int (Ymax-Ymin) i ’ I 
(1) 

Here xp is the current location of the particle, xmin, x,,, denotes the range of 
coordinate values for the current mesh, and N,, N,, the number of cells in the x and 
y directions. Int( } represents truncation to the integer part. 

Locating particles on a mesh becomes more complicated as soon as any 
irregularity is introduced in the mesh structure. Even for rectangular grids with 
nonuniform spacing, (1) is no longer valid. In the case we wish to consider, namely 
unstructured grids, the level of irregularity of the mesh is assumed to be much 
higher. Unstructured grids contain elements of arbitrary size and different mesh 
points are connected to different numbers of neighbors. On the other hand, unstruc- 
tured grids can be used to great advantage in modelling geometrically complicated 
domains because of the ability to place points wherever needed. For the same 
reason, they are easier to generate automatically and to dynamically refine. 

Two basic approaches have been used to trace particles through nonuniform, 
curvilinear, or irregular meshes. They are mapping and searching. In the first case, 
a curvinlinear or simply nonuniform mesh is mapped into a logically rectangular 
grid via coordinate transformations based on interpolation. Particles are then 
advanced in the logical grid space rather than physical space [5,6]. This approach 
has the advantage of avoiding a search procedure which has often been considered 
to have poor vectorization potential. The disadvantage is that the mapping is only 
approximate and particle velocities are discontinuous. These properties introduce 
errors in particle trajectories although the errors can be kept acceptably small by 
special means [7]. However, mapping is not an option for unstructured grids, since 
these cannot be embedded in a logically rectangular mesh. 

Searching to find a particle’s true host element or cell is the most desirable 
approach from a calculational viewpoint if it can also be made efficient. There are 
many possible strategies. Among these, the following three appear to be the most 
promising : 

(a) Use of a Cartesian background grid. The idea is to superimpose the 
irregular foreground grid on a regular background grid. The elements of the 
foreground mesh that cover each cell of the Cartesian mesh are stored in a linked 
list. Given the new particle position xp, the cell of the Cartesian background grid 
is obtained from (1). Then, all elements covering this cell are checked to find the 
new host element for the particle. For the special case in which the foreground grid 
is logically rectangular, the approximate weights of the particles with respect to the 
foreground grid can be inferred from the precomputed weights of the foreground 
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nodes with respect to the background nodes [8]. The main shortcoming of this 
approach is the inefficiency and inaccuracy that arises when meshes with large 
variations in element size are employed. If the number of cells employed for the 
background mesh is too small, the number of elements that need to be checked may 
become excessive. If, on the other hand, the number of cells employed for the 
background mesh is too large, the storage overhead may become extravagant. 
Nevertheless, the method is easy to implement and easy to vectorize. 

(b) Use of tree structures. Here one attempts to circumvent the problems 
encountered by the previous method for meshes with large variations in element 
size by using a hierarchy of Cartesian meshes. This is most easily accomplished with 
quad trees (2D) or octal trees (3D) [9]. The main shortcoming of this procedure 
is the additional complexity in coding and the essentially scalar nature of the proce- 
dure. A tree-based scheme introduces additional indirect addressing that makes it 
all but impossible to vectorize. 

(c) Use of successive neighbor searches. The idea is to exploit as a judicious 
guess the host element before the particle was moved. Then, should the particle no 
longer be found in that element, the immediate neighbor most likely to contain the 
particle is searched next [2]. This procedure is repeated until the new host element 
is found. The algorithm is easy to implement and is very fast. It makes sense to 
assume that the new particle position is not many elements away from its previous 
position. This assumption stems from restrictions arising naturally out of considera- 
tions of accuracy and stability. Therefore, the number of neighbor-element searches 
required is typically small. Moreover, the performance does not degrade for meshes 
with greatly varying mesh sizes. On the other hand, the number of searches 
required does vary from particle to particle and thus would seem to inhibit 
vectorization. This paper describes a simple way to overcome the problem. 

The remainder of the paper is organized as follows: Section 2 describes the basic 
scalar algorithm in more depth. Section 3 shows how to vectorize the procedure, 
while Section 4 describes its implementation on parallel machines. Finally, Section 5 
contains some examples and timings. 

2. THE SCALAR ALGORITHM 

The basic strategy for searching neighboring elements to find the new particle 
host element is based on simple properties of linear basis functions [2, 10, 111. 
Therefore, the ideas presented here would be equally applicable for bilinear basis or 
shape functions on quad elements as well as for linear basis functions on triangles. 
We will only discuss the case of linear shape functions on triangles. For a triangle 
such as the one pictured in Fig. 1 with nodes xA, xB, xc, we may introduce the 
local coordinates 5, q as follows: 

x = x,4 + (xe - XJC; + (xc - x,)r/. (2) 
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FIG. 1. (a) A triangular element with the coordinates of each node X,, XB, and X, labeled in 
counterclockwise order. (b) The same element mapped into “natural” coordinates r and 9. 

Thus, if we desire to compute the 5, q-coordinates of an arbitrary given point xP, 
we have 

xp-XA = (xs- xA)5+(xc-xA)v (3) 

Introducing the notation xii = xi - xi, we obtain 

r 
0 

1 YCA -XCA xPA = 

? XBAYCA-YBAXCA ’ -YBA xBA I*( ) YPA ’ 
(4) 

The 5, q-coordinates are related to the element basis or shape functions N,, N,, N, 
in the following way [ 123 : 

N,=l-t-1, Nz=t, N,=I]. (5) 

Simply put, the basis function at a given node has a value of unity at that node and 
decreases linearly in the direction of the opposite face at which it is equal to zero 
by construction. Therefore, a particle at the point xp lies in the element if and only 
if 

max(N,, Nz, N3) < 1 and min(N,, N,, N3)>0. (6) 
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FIG. 2. A triangular element with a portion of the linear basis function associated with the second 
node shown in contours. The shaded contours indicate that the function becomes negative past the side 
opposite node 2. Also pictured are two hypothetical particles, one inside and one outside the element. 

The strategy is then to evaluate the shape functions of the element where the 
particle was last known to be, but at its new position. Any negative value means 
the particle is now absent from that element, and the element adjacent to the face 
opposite the node with the minimum weight should be searched. Figure 2 shows an 
arbitrary triangular element with one of its associated shape functions contoured. 
The shaded portion indicates the region where the shape function becomes negative. 
Examples of hypothetical particle search paths are given in Fig. 3. Two paths are 
shown indicating what could occur when a particle is relatively near or relatively 

FIG. 3. Hypothetical search paths through an unstructured grid. The gray point is the position 
where the particle was last known to be. Two different positions are shown, one near and one far from 
the original position. The arrows show the sequence of elements that would be searched in each case. 
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far from the original location. The algorithmic steps required to trace one particle 
are as follows: 

Sl. Given the current element E, gather the coordinates for this element. 

S2. Given the current particle position x,, evaluate from (4), (5) the shape 
functions N, , N,, N3 at xP. 

S3. If N, , N2, N, satisfy (6), the particle is in the current element E and N, , 
N,, N, are stored for later retrieval to interpolate charge, fields, etc. Therefore stop. 

S4. As N,, N2, N, do not satisfy (6), we should continue the search with the 
neighboring element: 

Set E' = E,(E, Zmin), where Zmin denotes the node with the smallest value of the 
shape-functions N1, N,, N3, and E, is a two-dimensional integer array which 
details elements surrounding a given element and which is keyed to the opposite 
node. A value of zero is substituted when no element exists opposite a given node, 
e.g., at boundaries. Hence: 

If E’ = 0, the particle lies outside the computational domain. Therefore stop. 
If E’>O, set Et E' and proceed to step Sl. 

3. VECTORIZATION 

The algorithm described above for one particle may be vectorized by operating 
on many particles at the same time. Before describing the vectorized version, we 
make the observation that even the scalar algorithm for one particle requires 
gather-type operations. For those unfamiliar with the term, a gather operation is 
one in which values from unordered locations in an array are brought together 
using another integer array to index the desired locations. The opposite, i.e., 
distributing values to unordered locations, is called a scatter. Gather operations are 
typical in any algorithm based on unstructured grids, but this is also the case for 
particle codes on structured grids. This is because particles and fields are advanced 
as separate objects. Thus linking them together at any step inevitably requires 
indirect addressing. Given that we need a certain number of gather operations in 
any case, the additional gather operations required of the vectorized particle tracer 
on unstructured grids represent a small increase in computational overhead. 

To obtain a vectorized algorithm we must perform steps Sl to S4 as described 
above in vector mode, executing the same operations on as many particles as 
possible. The obstacle to this approach is that not every particle will satisfy (6) in 
one pass. The remedy is to reorder the particles after each pass that all particles 
that have as yet not found their host element are at the top of the list. Such an 
algorithm would proceed in the following fashion: 

VO. Set the remaining number of particles N, = N, where N, is the total number 
of particles 
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Perform steps Sl to S4 in vector mode for all remaining particles N,. 

Write the indices of the M particles that do not satisfy (6) into a list of indices 
LPCUR (locations 1 to M). If M = 0: stop. 

Write the N, - N, particles that do satisfy (6) into LPCUR (locations M + 1 
to NR). 

Reorder all particle arrays using the list LPCUR. In this way, all particles 
that have not yet found their host element are at the top of their respective 
lists (locations 1 to M). 

Set N,cMand go to 1. 

Special vector operations involving indirect addressing are required to optimize 
this algorithm. Optimized gather operations are available on most vector com- 
puters to accomplish steps Vl and V4. Vectorized comparison-merge operations are 
used in place of if statements to optimize steps V2 and V3. 

One can reduce the additional memory requirements associated with indirect 
addressing by breaking up all loops over the N, remaining particles into sub- 
groups. This is accomplished automatically by using scalar temporaries on register 
to register machines. For memory to memory machines, a user-specified maximum 
group vector length must be specified. 

4. MULTIPROCE!SWR ENVIRONMENTS 

The above algorithm can be ported to multiprocessor environments in the two 
following ways : 

(a) By operating on several groups of particles at the same time; thus each 
processor would perform VO to V5 on its group of particles. 

(b) By breaking up all loops over the N, remaining particles into subgroups. 
Each processor would perform steps Vl to V4 on its group of particles. 

It remains to be seen which of the two approaches works better. Our impression is 
that the individual computer architecture more than anything else will shape the 
answer to this question. 

5. NUMERICAL EXAMPLE AND TIMINGS 

The vectorized particle tinder described above was coded and applied to trace 
many particles simultaneously on a typical unstructured grid. The task was stated 
as follows: discretize the square region [0, l] x [0, l] using triangles. Then place a 
large number of particles in the mesh. Move all particles the same fixed distance, 
but in random directions. If a particle lies outside the unit square, move it back 
inside. For the discretization, we used the mesh shown in Fig. 4 which contains 870 
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FIG. 4. The unit square discretized into 870 triangular elements comprising an unstructured grid. 
This is the grid used in the timing example. 

triangular elements. At the beginning, the particles were placed uniformly across the 
mesh forming a square lattice of particles. Figure 5 shows a typical sequence of 10 
steps for N,= 5 x 5 particles. To obtain accurate timings we performed a similar 
exercise but much larger in scope using N, = 10,000 particles to minimize the over- 
head associated with subroutine-calls and executing 500 timesteps to reduce the 
start-up overhead. The particles were again moved a distance every timestep of 
0.05-about the same as the average element size. On the mesh used (see Fig. 4), 
at most six elements had to be tested for each particle to locate the new host 

FIG. 5. Examples of random particle trajectories to be traced through the grid of Fig. 4. Each particle 
moves a distance of 0.05 in an arbitrary direction each step. The 5 x 5 lattice of points represents the 
starting positions. 
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Pass 

FIG. 6. A histogram of the number of particles remaining out of an original 10,000 after each pass 
of the vectorized particle tracer. Since each particle is moved about a cell per step in a random direction, 
random walk statistics dictate that most particles will be found in three passes. 

element. However, in most cases only live elements had to be examined. The 
number of particles remaining after each step, i.e., those that had not yet found 
their host elements, is pictured in the histogram shown in Fig. 6. Because in this test 
the particles are moved a fixed distance each time, the histogram remains fairly flat 
and then drops suddenly reflecting a corresponding drop in the probability that a 
particle has moved farther than three elements in any given direction. A different 
distribution of particle displacements could produce a somewhat different result, 
but in a statistically transparent way. 

To obtain timings, two runs were performed on a CRAY-XMP under the operat- 
ing system COS. In the first one, the CFT compiler options ON = F, OFF = V were 
invoked. This activates flop-tracing, but deactivates automatic vectorization. In the 
second run, only the ON = F option was used. The CRAY-XMP used had 
hardware gather and scatter operations. The timings obtained are listed in Table I. 

TABLE I 

Timings for Test Run 

Unvectorized Vector&d 

Particle tracing time (s) 251.0 17.6 

MFLOP rate recorded 1.11 20.82 

Total time (s) program 290.0 21.45 

Timing (~/particle/timestep) 51.4 3.52 
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The results demonstrate a speed-up factor of 1: 14 when using the automatic 
vectorization. The search time per particle for the vectorized version is also 
encouraging and suggests that the overhead in using unstructured meshes can be 
made quite acceptable. 

6. CONCLUSIONS 

A vectorized particle tracer for unstructured. grids has been described. The basic 
approach is to use the elementary properties of linear basis functions to search for 
particles on the grid using the element last occupied as an initial guess. To permit 
vectorization, a simple binary sort of the particles is performed every timestep such 
that all particles that have as yet not found their host element remain at the top 
of the list. In this way, vector-loops can be easily formed. Timings taken from a 
numerical example indicate that speed-ups of the order of 1: 14 can be obtained on 
vector-machines when using this algorithm. 

Although we have used two-dimensional planar triangles in our example, this 
algorithm generalizes easily to three dimensions. The elements in that case are 
tetrahedra, pyramids, or parallepipeds. Linear or bilinear shape functions defined at 
the element nodes possess the same properties that we have exploited in the examples 
presented and thus the same procedure is valid. 
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