
JOURNAL OF COMPUTATIONAL PHYSICS 91, 22-31 (1990)

A Vectorized Particle Tracer
for Unstructured Grids

RAINALD L&WIER

CMEE, School of Engineering and Applied Science,
The George Washington University,

Washington, DC 20052

AND

JOHN AMBROSIANO

University of California; Lawrence Livermore
National Laboratory, Livermore, California 94550

Received May 16, 1989; revised October 4, 1989

A vectorized particle tracer for unstructured grids is described. The basic approach is to use
elementary properties of the linear basis functions to search for particles on the grid using the
element last occupied as an initial guess. To permit vectorization, a simple binary sort of the
particles is performed every timestep such that all particles that have as yet not found their
host element remain at the top of the list. In this way, vector-loops can be easily formed.
Timings taken from a numerical example indicate that speed-ups of the order of 1:14 can be
obtained on vector-machines when using this algorithm. 0 1990 Academic Press, Inc.

1. INTRODUCTION

In many applications of computational physics, particles are used in conjunction
with finite difference of finite element grids. This strategy is commonly adopted in
applications where the physical fields are most conveniently sampled at Eulerian
mesh points but certain aspects of transport are best represented by the motion of
Lagrangian particles. In fluid dynamics, for example [1, 21, flow fields may be
updated on an Eulerian finite difference grid using information from Lagrangian
particles which carry mass and, in some cases, momentum and energy. A more
widespread example is the use of particle-mesh techniques to model plasmas or
particle beams [3,4]. Here the particles carry electric charge and mass and interact
through the Lorentz force equation with the electric and magnetic fields sampled
from the grid. These fields in turn are updated in an Eulerian fashion using sources
accumulated from the particles.

In most applications, the number of particles required to faithfully reproduce the
physical processes at hand is considerable. In fact, some applications have used on

22
0021-9991/90 $3.00
Copyright 0 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

A VECTORIZED PARTICLE TRACER 23

the order of lo6 particles. During each timestep of the simulation, the particles
change position. But before they can contribute information to the grid or sample
field information from it, their new host element or cell must be identified. Therefore
they must be traced through the grid. Regular, uniform Cartesian grids pose no
special problem. The new host cell (i,, j,) is easily computed as

i, = Int
1

(Xp-Xmin)

knax - Xmin)

N,

I

+ 1, (Yp-Ymin) N + 1.

jc=Int (Ymax-Ymin) i ’ I
(1)

Here xp is the current location of the particle, xmin, x,,, denotes the range of
coordinate values for the current mesh, and N,, N,, the number of cells in the x and
y directions. Int(} represents truncation to the integer part.

Locating particles on a mesh becomes more complicated as soon as any
irregularity is introduced in the mesh structure. Even for rectangular grids with
nonuniform spacing, (1) is no longer valid. In the case we wish to consider, namely
unstructured grids, the level of irregularity of the mesh is assumed to be much
higher. Unstructured grids contain elements of arbitrary size and different mesh
points are connected to different numbers of neighbors. On the other hand, unstruc-
tured grids can be used to great advantage in modelling geometrically complicated
domains because of the ability to place points wherever needed. For the same
reason, they are easier to generate automatically and to dynamically refine.

Two basic approaches have been used to trace particles through nonuniform,
curvilinear, or irregular meshes. They are mapping and searching. In the first case,
a curvinlinear or simply nonuniform mesh is mapped into a logically rectangular
grid via coordinate transformations based on interpolation. Particles are then
advanced in the logical grid space rather than physical space [5,6]. This approach
has the advantage of avoiding a search procedure which has often been considered
to have poor vectorization potential. The disadvantage is that the mapping is only
approximate and particle velocities are discontinuous. These properties introduce
errors in particle trajectories although the errors can be kept acceptably small by
special means [7]. However, mapping is not an option for unstructured grids, since
these cannot be embedded in a logically rectangular mesh.

Searching to find a particle’s true host element or cell is the most desirable
approach from a calculational viewpoint if it can also be made efficient. There are
many possible strategies. Among these, the following three appear to be the most
promising :

(a) Use of a Cartesian background grid. The idea is to superimpose the
irregular foreground grid on a regular background grid. The elements of the
foreground mesh that cover each cell of the Cartesian mesh are stored in a linked
list. Given the new particle position xp, the cell of the Cartesian background grid
is obtained from (1). Then, all elements covering this cell are checked to find the
new host element for the particle. For the special case in which the foreground grid
is logically rectangular, the approximate weights of the particles with respect to the
foreground grid can be inferred from the precomputed weights of the foreground

24 LijHNER AND AMBROSIANO

nodes with respect to the background nodes [8]. The main shortcoming of this
approach is the inefficiency and inaccuracy that arises when meshes with large
variations in element size are employed. If the number of cells employed for the
background mesh is too small, the number of elements that need to be checked may
become excessive. If, on the other hand, the number of cells employed for the
background mesh is too large, the storage overhead may become extravagant.
Nevertheless, the method is easy to implement and easy to vectorize.

(b) Use of tree structures. Here one attempts to circumvent the problems
encountered by the previous method for meshes with large variations in element
size by using a hierarchy of Cartesian meshes. This is most easily accomplished with
quad trees (2D) or octal trees (3D) [9]. The main shortcoming of this procedure
is the additional complexity in coding and the essentially scalar nature of the proce-
dure. A tree-based scheme introduces additional indirect addressing that makes it
all but impossible to vectorize.

(c) Use of successive neighbor searches. The idea is to exploit as a judicious
guess the host element before the particle was moved. Then, should the particle no
longer be found in that element, the immediate neighbor most likely to contain the
particle is searched next [2]. This procedure is repeated until the new host element
is found. The algorithm is easy to implement and is very fast. It makes sense to
assume that the new particle position is not many elements away from its previous
position. This assumption stems from restrictions arising naturally out of considera-
tions of accuracy and stability. Therefore, the number of neighbor-element searches
required is typically small. Moreover, the performance does not degrade for meshes
with greatly varying mesh sizes. On the other hand, the number of searches
required does vary from particle to particle and thus would seem to inhibit
vectorization. This paper describes a simple way to overcome the problem.

The remainder of the paper is organized as follows: Section 2 describes the basic
scalar algorithm in more depth. Section 3 shows how to vectorize the procedure,
while Section 4 describes its implementation on parallel machines. Finally, Section 5
contains some examples and timings.

2. THE SCALAR ALGORITHM

The basic strategy for searching neighboring elements to find the new particle
host element is based on simple properties of linear basis functions [2, 10, 111.
Therefore, the ideas presented here would be equally applicable for bilinear basis or
shape functions on quad elements as well as for linear basis functions on triangles.
We will only discuss the case of linear shape functions on triangles. For a triangle
such as the one pictured in Fig. 1 with nodes xA, xB, xc, we may introduce the
local coordinates 5, q as follows:

x = x,4 + (xe - XJC; + (xc - x,)r/. (2)

A VECTORIZED PARTICLE TRACER 25

C
1

rl

;\

(b)

B
A

0
0 5 ’

FIG. 1. (a) A triangular element with the coordinates of each node X,, XB, and X, labeled in
counterclockwise order. (b) The same element mapped into “natural” coordinates r and 9.

Thus, if we desire to compute the 5, q-coordinates of an arbitrary given point xP,
we have

xp-XA = (xs- xA)5+(xc-xA)v (3)

Introducing the notation xii = xi - xi, we obtain

r
0

1 YCA -XCA xPA =

? XBAYCA-YBAXCA ’ -YBA xBA I*() YPA ’
(4)

The 5, q-coordinates are related to the element basis or shape functions N,, N,, N,
in the following way [123 :

N,=l-t-1, Nz=t, N,=I]. (5)

Simply put, the basis function at a given node has a value of unity at that node and
decreases linearly in the direction of the opposite face at which it is equal to zero
by construction. Therefore, a particle at the point xp lies in the element if and only
if

max(N,, Nz, N3) < 1 and min(N,, N,, N3)>0. (6)

26 LiiHNER AND AMBROSIANO

FIG. 2. A triangular element with a portion of the linear basis function associated with the second
node shown in contours. The shaded contours indicate that the function becomes negative past the side
opposite node 2. Also pictured are two hypothetical particles, one inside and one outside the element.

The strategy is then to evaluate the shape functions of the element where the
particle was last known to be, but at its new position. Any negative value means
the particle is now absent from that element, and the element adjacent to the face
opposite the node with the minimum weight should be searched. Figure 2 shows an
arbitrary triangular element with one of its associated shape functions contoured.
The shaded portion indicates the region where the shape function becomes negative.
Examples of hypothetical particle search paths are given in Fig. 3. Two paths are
shown indicating what could occur when a particle is relatively near or relatively

FIG. 3. Hypothetical search paths through an unstructured grid. The gray point is the position
where the particle was last known to be. Two different positions are shown, one near and one far from
the original position. The arrows show the sequence of elements that would be searched in each case.

A VECTORIZED PARTICLETRACER 27

far from the original location. The algorithmic steps required to trace one particle
are as follows:

Sl. Given the current element E, gather the coordinates for this element.

S2. Given the current particle position x,, evaluate from (4), (5) the shape
functions N, , N,, N3 at xP.

S3. If N, , N2, N, satisfy (6), the particle is in the current element E and N, ,
N,, N, are stored for later retrieval to interpolate charge, fields, etc. Therefore stop.

S4. As N,, N2, N, do not satisfy (6), we should continue the search with the
neighboring element:

Set E' = E,(E, Zmin), where Zmin denotes the node with the smallest value of the
shape-functions N1, N,, N3, and E, is a two-dimensional integer array which
details elements surrounding a given element and which is keyed to the opposite
node. A value of zero is substituted when no element exists opposite a given node,
e.g., at boundaries. Hence:

If E’ = 0, the particle lies outside the computational domain. Therefore stop.
If E’>O, set Et E' and proceed to step Sl.

3. VECTORIZATION

The algorithm described above for one particle may be vectorized by operating
on many particles at the same time. Before describing the vectorized version, we
make the observation that even the scalar algorithm for one particle requires
gather-type operations. For those unfamiliar with the term, a gather operation is
one in which values from unordered locations in an array are brought together
using another integer array to index the desired locations. The opposite, i.e.,
distributing values to unordered locations, is called a scatter. Gather operations are
typical in any algorithm based on unstructured grids, but this is also the case for
particle codes on structured grids. This is because particles and fields are advanced
as separate objects. Thus linking them together at any step inevitably requires
indirect addressing. Given that we need a certain number of gather operations in
any case, the additional gather operations required of the vectorized particle tracer
on unstructured grids represent a small increase in computational overhead.

To obtain a vectorized algorithm we must perform steps Sl to S4 as described
above in vector mode, executing the same operations on as many particles as
possible. The obstacle to this approach is that not every particle will satisfy (6) in
one pass. The remedy is to reorder the particles after each pass that all particles
that have as yet not found their host element are at the top of the list. Such an
algorithm would proceed in the following fashion:

VO. Set the remaining number of particles N, = N, where N, is the total number
of particles

28

Vl.

v2.

v3.

V4.

V5.

LijHNER AND AMBROSIANO

Perform steps Sl to S4 in vector mode for all remaining particles N,.

Write the indices of the M particles that do not satisfy (6) into a list of indices
LPCUR (locations 1 to M). If M = 0: stop.

Write the N, - N, particles that do satisfy (6) into LPCUR (locations M + 1
to NR).

Reorder all particle arrays using the list LPCUR. In this way, all particles
that have not yet found their host element are at the top of their respective
lists (locations 1 to M).

Set N,cMand go to 1.

Special vector operations involving indirect addressing are required to optimize
this algorithm. Optimized gather operations are available on most vector com-
puters to accomplish steps Vl and V4. Vectorized comparison-merge operations are
used in place of if statements to optimize steps V2 and V3.

One can reduce the additional memory requirements associated with indirect
addressing by breaking up all loops over the N, remaining particles into sub-
groups. This is accomplished automatically by using scalar temporaries on register
to register machines. For memory to memory machines, a user-specified maximum
group vector length must be specified.

4. MULTIPROCE!SWR ENVIRONMENTS

The above algorithm can be ported to multiprocessor environments in the two
following ways :

(a) By operating on several groups of particles at the same time; thus each
processor would perform VO to V5 on its group of particles.

(b) By breaking up all loops over the N, remaining particles into subgroups.
Each processor would perform steps Vl to V4 on its group of particles.

It remains to be seen which of the two approaches works better. Our impression is
that the individual computer architecture more than anything else will shape the
answer to this question.

5. NUMERICAL EXAMPLE AND TIMINGS

The vectorized particle tinder described above was coded and applied to trace
many particles simultaneously on a typical unstructured grid. The task was stated
as follows: discretize the square region [0, l] x [0, l] using triangles. Then place a
large number of particles in the mesh. Move all particles the same fixed distance,
but in random directions. If a particle lies outside the unit square, move it back
inside. For the discretization, we used the mesh shown in Fig. 4 which contains 870

A VECTORIZED PARTICLE TRACER 29

FIG. 4. The unit square discretized into 870 triangular elements comprising an unstructured grid.
This is the grid used in the timing example.

triangular elements. At the beginning, the particles were placed uniformly across the
mesh forming a square lattice of particles. Figure 5 shows a typical sequence of 10
steps for N,= 5 x 5 particles. To obtain accurate timings we performed a similar
exercise but much larger in scope using N, = 10,000 particles to minimize the over-
head associated with subroutine-calls and executing 500 timesteps to reduce the
start-up overhead. The particles were again moved a distance every timestep of
0.05-about the same as the average element size. On the mesh used (see Fig. 4),
at most six elements had to be tested for each particle to locate the new host

FIG. 5. Examples of random particle trajectories to be traced through the grid of Fig. 4. Each particle
moves a distance of 0.05 in an arbitrary direction each step. The 5 x 5 lattice of points represents the
starting positions.

30 LiiHNER AND AMBROSIANO

Pass

FIG. 6. A histogram of the number of particles remaining out of an original 10,000 after each pass
of the vectorized particle tracer. Since each particle is moved about a cell per step in a random direction,
random walk statistics dictate that most particles will be found in three passes.

element. However, in most cases only live elements had to be examined. The
number of particles remaining after each step, i.e., those that had not yet found
their host elements, is pictured in the histogram shown in Fig. 6. Because in this test
the particles are moved a fixed distance each time, the histogram remains fairly flat
and then drops suddenly reflecting a corresponding drop in the probability that a
particle has moved farther than three elements in any given direction. A different
distribution of particle displacements could produce a somewhat different result,
but in a statistically transparent way.

To obtain timings, two runs were performed on a CRAY-XMP under the operat-
ing system COS. In the first one, the CFT compiler options ON = F, OFF = V were
invoked. This activates flop-tracing, but deactivates automatic vectorization. In the
second run, only the ON = F option was used. The CRAY-XMP used had
hardware gather and scatter operations. The timings obtained are listed in Table I.

TABLE I

Timings for Test Run

Unvectorized Vector&d

Particle tracing time (s) 251.0 17.6

MFLOP rate recorded 1.11 20.82

Total time (s) program 290.0 21.45

Timing (~/particle/timestep) 51.4 3.52

A VECTORIZED PARTICLE TRACER 31

The results demonstrate a speed-up factor of 1: 14 when using the automatic
vectorization. The search time per particle for the vectorized version is also
encouraging and suggests that the overhead in using unstructured meshes can be
made quite acceptable.

6. CONCLUSIONS

A vectorized particle tracer for unstructured. grids has been described. The basic
approach is to use the elementary properties of linear basis functions to search for
particles on the grid using the element last occupied as an initial guess. To permit
vectorization, a simple binary sort of the particles is performed every timestep such
that all particles that have as yet not found their host element remain at the top
of the list. In this way, vector-loops can be easily formed. Timings taken from a
numerical example indicate that speed-ups of the order of 1: 14 can be obtained on
vector-machines when using this algorithm.

Although we have used two-dimensional planar triangles in our example, this
algorithm generalizes easily to three dimensions. The elements in that case are
tetrahedra, pyramids, or parallepipeds. Linear or bilinear shape functions defined at
the element nodes possess the same properties that we have exploited in the examples
presented and thus the same procedure is valid.

REFERENCES

1. F. H. HARLOW, “The Particle-In-Cell Computing Method for Fluid Dynamics,” in MethodF in
Computational Physics, Vol. 3, edited by B. Alder, S. Fernbach, and M. Rotenberg (Academic Press,
New York, 1964), p. 319.

2. J. U. BRACKBILL AND H. M. RUPPEL, J. Comput. Phys. 65, 314 (1986).
3. C. K. BIRDSALL AND A. B. LANGDON, Plasma Physics via Computer Simulation (McGraw-Hill,

New York, 1985).
4. R. W. HACKNEY AND J. W. EASTWARD, Computer Simulation Using Particles (McGraw-Hill,

New York, 1981).
5. J. C. PETERSON, Thesis, University of California at Berkeley, 1984 (unpublished).
6. M. E. JONES, “Electromagnetic PIC Codes with Body-Fitted Coordinates,” 12th Conference on the

Numerical Simulation of Plasmas, San Francisco, California, Sept. 2&23, 1987) (unpublished).
7. M. E. JONES, R. K. KEININGS, W. PETER, AND S. C. WILKES, Los Alamos National Laboratory

Report LA-UR-89-1230, 1989 (unpublished).
8. D. SELDNER AND T. WESTERMANN, J. Comput. Phys. 79, 1 (1988).
9. H. SAMET, Comput. Surveys 16, No. 2, 187 (1984).

10. M. J. FRITTS AND A. T. DROBOT, “Plasma Simulations on an Unstructured Grid,” in IEEE Interna-
tional Conference on Plasma Science, Seattle, Washington, June 6-8, 1988 (unpublished).

Il. R. L&NER, Commun. Appl. Numer. Methodr 4, 123 (1988).
12. 0. C. ZIENKIEWICZ AND K. MORGAN, Finite Elements and Approximation (Wiley, New York, 1983).

581/91/l-3

